

Current Orbiter Capabilities for Future Landing Site Selection

Richard Zurek

Mars Program Office Chief Scientist

Jet Propulsion Laboratory

California Institute of Technology

Proposed* Mars Mission Architecture

Orbiter Support for Future Missions

- Orbital Information is critical to future missions landing on Mars in the following ways:
 - Identification, Characterization, and Certification (for safety) of landing sites
 - Characterization of atmospheric environments for EDL
 - Characterization of surface environments for landed operations
- MER, PHX and MSL have all benefited from such data
- Future landers now proposed include the ExoMars 2016 EDM and a 2018 Dual Rover missions
- Large areas of the planet have been covered at increased spatial resolutions, with some coverage continuing to expand
- Major assets for providing additional critical data are currently: ODY, MEX, MRO
 - 2016 EMTGO data would arrive late in the process for any launch in 2018

Observation Attributes

MGS

Surface Coverage

Project	Team	Observation	Objective	Resoln: m/pixel	Coverage*
ODY	THEMIS	(mid) Day IR (late) Day IR Night IR VIS	Composition Morphology Thermal Inertia Morphology	100 100 100 18	~ 40% (55%) ~100% ~100% ~ 40% (54%)
MEX	HRSC	VIS (color, stereo)	Morphology	≤ 20 ≤ 60	~56% ~85%
	OMEGA	VIS-IR	Composition	~300	>> 50%
	CRISM	VIS-NIR	Composition	~200 in 72 bnd ~200 in 264 bnd ~ 18 in 544 bnd	~70% (80%) ~15% ~ few %
MRO	CTX	VIS (stereo)	Morphology	~ 6	62%
	HiRISE	VIS (stereo, color swath)	Morphology (composition)	~0.3 – 0.6 (color)	~ 1%

^{* %} of Mars surface covered with good quality data (total including high opacity periods)

MEX HRSC Coverage

MRO CTX Coverage Map

As of July 31, 2010 MSSS/JPL/NASA

MRO CRISM Coverage (as of Sep. 2010)

Туре	PSP+ESP	ESP
FRT	10045	3918
HRL	3195	1286
HRS	1719	795
Targeted total	14959	5999
EPF	5885	2164
LMB	94	94
Gimbaled Total	20938	8257
TOD	9452	6082
MSW	2557	0
MSP segment	43038	12547
HSP segment	6968	6968
HSV segment	1449	1449
Survey segment total	51455	20964

~71% low-opacity mapping coverage

- ODY: Approved for second Extended Mission (FY11-12)
 - THEMIS IR & VIS: Working well in mid-afternoon orbit
 - Limited fuel will still support operations thru MSL prime mission
- MEX: Approved thru FY10, likely to be confirmed thru 2012, and request to be extended thru FY14 under review
 - Uncertain remaining fuel load should support operations thru this period
 - Orbit phasing periodically limits day-time viewing
 - All instruments still operating
- MRO: Approved for first full Extended Mission (FY11-12)
 - Telecom is essentially single string, but has been that way for 4 years
 - Safe mode entries vexing, but not thought to be life-limiting
 - Fuel not currently an issue given latest scenarios for covering MSL EDL
 - MCS, MARCI, CTX, SHARAD continue to work as in PSP/ESP
 - HiRISE and CRISM have seen some degradation (next slide)

MRO instrument issues:

- HiRISE: Team has used longer and more frequent warm-ups to compensate for increasing ADC (analog to digital converters) bit flip errors
 - Considering an onboard annealing sequence which ground testing indicates could reduce errors by breaking up and dispersing the ADC contamination
- CRISM: Both the gimbal (needed for high resolution) and the coolers (needed for IR observations) have degraded with time
 - Plan: Use full VNIR/IR capability for 2 weeks every other month in minicampaigns focused on high priority items (especially during periods of higher data rate)
 - VNIR-only mode can be used at other times (but avoid major dust events)

 o VNIR (0.4 to 1.1µm) aqueous mineral signatures are limited to ferric minerals
 - Bottom Line: Full-resolution VNIR/IR targeting reserved for high priority targets

California Institute of Technology MRO EM Predicted Data Volumes

Summary

- Current Orbiter capabilities for support of future landed missions are substantial, but instruments and spacecraft are aging
 - Best to start the process now for proposed missions like 2018
 - Need site criteria (e.g., as being developed by the E2E SAG)
 - Need to use the capabilities conservatively where instrument and/or spacecraft limitations dictate
- Landing site selection processes should be structured so that the life-limited capabilities are used only for the highest priority items
 - Need to use the data already in hand—there's a lot, even though more needs to be done on many interesting places
 - Need to set site priorities using existing data and increased coverage of lower resolution/survey observations
 - May be useful to exploit correlations that have emerged between spectral and visible imagers (e.g., color variations and VNIR, IR & thermal IR)
 - Need to have realistic expectations about the number of sites that could be certified (i.e., with nearly complete high resolution coverage) and the schedule of data acquisition